The ARF-p53 senescence pathway in mouse and human cells.

نویسندگان

  • R Wadhwa
  • T Sugihara
  • K Taira
  • S C Kaul
چکیده

Mouse and human cells have most frequently been used for studies that have led to the elucidation of various molecular pathways involved in senescence. The ARF-p53 pathway has been assigned as one of the major protagonists in these phenomena. ARF is an alternative reading frame protein encoded along with p16INK4A by the INK4a locus on human chromosome 9p21 and the corresponding locus on mouse chromosome 4. Whereas the mouse ARF (p19ARF) consists of 169 amino acids, the human ARF (p14ARF) consists of 132 amino acids, truncated at the C-terminus. Molecular studies on the regulation of ARF activity by its binding partners have revealed that mouse ARF protein, but not human ARF protein, interacts with a cytoplasmic protein, Pex19p. This interaction of mouse ARF with Pex19p results in its milder p53 activation function in mouse cells as compared to human cells and thus accounts, at least in part, for the weaker tumor surveillance and frequent immortalization of mouse cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis.

UNLABELLED In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53-ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In additio...

متن کامل

Cdk4 disruption renders primary mouse cells resistant to oncogenic transformation, leading to Arf/p53-independent senescence.

A large number of human cancers display alterations in the Ink4a/cyclin D/Cdk4 genetic pathway, suggesting that activation of Cdk4 plays an important role in oncogenesis. Here we report that Cdk4-null mouse embryonic fibroblasts are resistant to transformation in response to Ras activation with dominant-negative (DN) p53 expression or in the Ink4a/Arf-null background, judged by foci formation, ...

متن کامل

Cell Cycle and Senescence A p53/ARF-Dependent Anticancer Barrier Activates Senescence and Blocks Tumorigenesis without Impacting Apoptosis

In response to oncogene activation and oncogene-induced aberrant proliferation, mammalian cells activate apoptosis and senescence, usually via the p53–ARF tumor-suppressor pathway. Apoptosis is a known barrier to cancer and is usually downregulated before full malignancy, but senescence as an anticancer barrier is controversial due to its presence in the tumor environment. In addition, senescen...

متن کامل

Oncogenic ras and p53 cooperate to induce cellular senescence.

Oncogenic activation of the mitogen-activated protein (MAP) kinase cascade in murine fibroblasts initiates a senescence-like cell cycle arrest that depends on the ARF/p53 tumor suppressor pathway. To investigate whether p53 is sufficient to induce senescence, we introduced a conditional murine p53 allele (p53(val135)) into p53-null mouse embryonic fibroblasts and examined cell proliferation and...

متن کامل

How to become immortal: let MEFs count the ways

Understanding the molecular mechanisms and biological consequences of genetic changes occurring during bypass of cellular senescence spans a broad area of medical research from the cancer field to regenerative medicine. Senescence escape and immortalisation have been intensively studied in murine embryonic fibroblasts as a model system, and are known to occur when the p53/ARF tumour suppressor ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Histology and histopathology

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2004